Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane.
نویسندگان
چکیده
In this paper, noble-metal Pt nanoparticles of around 2.5 nm were deposited on graphitic carbon nitride (g-C3N4) synthesized by a chemical reduction process in ethylene glycol. Compared with pure g-C3N4, the resulting Pt-loaded g-C3N4 (Pt/CN) exhibited a considerable improvement in the photoreduction of CO2 to CH4 in the presence of water vapor at ambient temperature and atmospheric pressure under visible light irradiation. 2 wt% Pt-loaded g-C3N4 (2Pt/CN) nanocomposites produced the highest CH4 yield of 13.02 μmol gcatalyst(-1) after 10 h of light irradiation, which was a 5.1-fold enhancement in comparison with pure g-C3N4 (2.55 μmol gcatalyst(-1)). The remarkable photocatalytic activity of Pt/CN nanostructures in the CH4 production was ascribed to the enhanced visible light absorption and efficient interfacial transfer of photogenerated electrons from g-C3N4 to Pt due to the lower Fermi level of Pt in the Pt/CN hybrid heterojunctions as evidenced by the UV-Vis and photoluminescence studies. The enriched electron density on Pt favored the reduction of CO2 to CH4via a multi-electron transfer process. This resulted in the inhibition of electron-hole pair recombination for effective spatial charge separation, thus enhancing the photocatalytic reactions. Based on the experimental results obtained, a plausible mechanism for improved photocatalytic performance associated with Pt/CN was proposed.
منابع مشابه
2D/2D Graphitic Carbon Nitride (g-C3N4) Heterojunction Nanocomposites for Photocatalysis: Why Does Face-to-Face Interface Matter?
In recent years, two-dimensional (2D) graphitic carbon nitride (g-C3N4) has elicited interdisciplinary research fascination among the scientific communities due to its attractive properties such as appropriate band structures, visible-light absorption, and high chemical and thermal stability. At present, research aiming at engineering 2D g-C3N4 photocatalysts at an atomic and molecular level in...
متن کاملAg2S/g-C3N4 composite photocatalysts for efficient Pt-free hydrogen production. The co-catalyst function of Ag/Ag2S formed by simultaneous photodeposition.
Without Pt as cocatalyst, the photocatalytic hydrogen evolution activity of graphitic carbon nitride (g-C3N4) or even its composite is normally rather low (<1 μmol h(-1)). Exploring Pt-free cocatalysts to substitute precious Pt is of great importance in the photocatalytic field. In the present work, Ag2S-modified g-C3N4 (Ag2S/g-C3N4) composite photocatalysts were prepared via a simple precipita...
متن کاملA density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride
Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...
متن کاملA density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride
Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...
متن کاملVisible-light-driven photooxidation of alcohols using surface-doped graphitic carbon nitride
In recent years, graphitic carbon nitride (g-C3N4) has received substantial interest as a photocatalyst for metal-free, visiblelight promoted reactions. It exhibits a graphite-like, layered structure wherein tris-triazine units are connected through C–N-bonds forming a two-dimensional layer. g-C3N4 can be synthesized via various methods such as pyrolysis of urea or other nitrogen-rich precursor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 44 3 شماره
صفحات -
تاریخ انتشار 2015